ELEMENTS

OF

ALGEBRA:

INCLUDING STURMS' THEOREM.

TRANSLATED FROM THE FRENCH OF M. BOURDON.

ADAPTED TO THE COURSE OF MATHEMATICAL INSTRUCTION IN THE UNITED STATES,

BY CHARLES DAVIES, LL.D.

AUTHOR OF ARITHMETIC, ELEMENTARY ALGEBRA, ELEMENTARY GEOMETRY, PRACTICAL GEOMETRY, ELEMENTS OF SURVEYING, ELEMENTS OF DESCRIPTIVE AND ANALYTICAL GEOMETRY, ELEMENTS OF DIFFERENTIAL AND INTEGRAL CALCULUS, AND A TREATISE ON SHADES, SHADOWS, AND PERSPECTIVE.

NEW YORK:
PUBLISHED BY A. S. BARNES & CO.
No. 51 JOHN STREET.
1845.

DAVIES' COURSE OF MATHEMATICS.

DAVIES' FIRST LESSONS IN ARITHMETIC, Designed for Beginners.

DAVIES' ARITHMETIC,
DESIGNED FOR THE USE OF ACADEMIES AND SCHOOLS.

KEY TO DAVIES' ARITHMETIC.

DAVIES' ELEMENTARY ALGEBRA:
Being an introduction to the Science.

KEY TO DAVIES' ELEMENTARY ALGEBRA.

DAVIES' ELEMENTARY GEOMETRY.

This work embraces the elementary principles of Geometry. The reasoning is plain and concise, but at the same time strictly rigorous.

DAVIES' PRACTICAL GEOMETRY,

Embracing the facts of Geometry, with applications in Artificer's Work, Mensuration, and Mechanical Philosophy.

DAVIES' BOURDON'S ALGERRA,

Being an abridgment of the work of M. Bourdon, with the addition of practical examples.

DAVIES' LEGENDRE'S GEOMETRY AND TRIGONOMETRY,

Being an abridgment of the work of M. Legendre, with the addition of a Treatise on Mensuration of Planes and Solids, and a Table of Logarithms and Logarithmic Sines.

DAVIES' SURVEYING,

With a description and plates of, the Theodolite, Compass, Plane-Table, and Level-also, Maps of the Topographical Signs adopted by the Engineer Department—an explanation of the method of surveying the Public Lands, and an Elementary Treatise on Navigation.

DAVIES' ANALYTICAL GEOMETRY,

1262

Embracing the Equations of the Point and Straight Line—of the Conic Sections—of the Line and Plane in Space—also, the discussion of the General Equation of the second degree, and of Surfaces of the Second Order.

DAVIES' DESCRIPTIVE GEOMETRY,
With its application to Spherical Projections.

DAVIES' SHADOWS AND LINEAR PERSPECTIVE.

DAVIES' DIFFERENTIAL AND INTEGRAL CALCULUS.

Entered, according to Act of Congress, in the year 1844, BY CHARLES DAVIES,

in the Clerk's Office of the District Court of the United States, for the Southern District of New York.

C. A. ALVORD. PRINTER, corner of John and Dutch Street. New York.

Digitized by Google

4 .

PREFACE

THE Treatise on Algebra, by M. Bourdon, is a work of singular excellence and merit. In France, it is one of the leading text books. Shortly after its first publication, it passed through several editions, and has formed the basis of every subsequent work on the subject of Algebra.

The original work is, however, a full and complete treatise on the subject of Algebra, the later editions containing about eight hundred pages octavo. The time which is given to the study of Algebra, in this country, even in those seminaries where the course of mathematics is the fullest, is too short to accomplish so voluminous a work, and hence it has been found necessary either to modify it, or to abandon it altogether.

The following work is abridged from a translation of M. Bourdon, made by Lieut. Ross, now the distinguished professor of mathematics in Kenyon College, Ohio.

The Algebra of M. Bourdon, however, has been regarded only as a standard or model. The order of arrangement, in many parts, has been changed; new rules and new methods have been introduced; and all the modifications which have been suggested by teaching and a careful comparison with other standard works, have been freely made. It would, perhaps, not be just to regard M. Bourdon as responsible for the work in its present form.

It has been the intention to unite in this work, the scientific discussions of the French, with the practical methods of the English school; that theory and practice, science and art, may mutually aid and illustrate each other.

CHARLES DAVIES.

WEST POINT, June, 1844.

CONTENTS.

CHAPTER I.

Similar Terms—Reduction of Similar Terms 28—30 Problems—Theorems—Definition of—Question 31—33 CHAPTER II. OF ADDITION, SUBTRACTION, MULTIPLICATION, AND DIVISION. Addition—Rule 33—36 Subtraction—Rule—Remark 36—40 Multiplication—Rule for Monomials 40—42 Remarks—Theorems Proved 45—48 Of Factoring Polynomials 48—49 Division of Monomials—Rule 49—52 Signification of the Symbol ao 52—54 Division of Polynomials—Rule 54—56 Remarks 57—61	PRELIMINARY DEFINITIONS AND REMARKS.	
Similar Terms—Reduction of Similar Terms 28—30 Problems—Theorems—Definition of—Question 31—33 CHAPTER II. OF ADDITION, SUBTRACTION, MULTIPLICATION, AND DIVISION. Addition—Rule 33—36 Subtraction—Rule—Remark 36—40 Multiplication—Rule for Monomials 40—42 Rule for Polynomials and Signs 42—45 Remarks—Theorems Proved 45—48 Of Factoring Polynomials 48—49 Division of Monomials—Rule 49—52 Signification of the Symbol ao 52—54 Division of Polynomials—Rule 54—56 Remarks 57—61 When m is entire, am—bm is divisible by a—b 61—62 CHAPTER III.		ARTICLES
Problems—Theorems—Definition of—Question. 31—33 CHAPTER II. OF ADDITION, SUBTRACTION, MULTIPLICATION, AND DIVISION. Addition—Rule. 33—36 Subtraction—Rule—Remark. 36—40 Multiplication—Rule for Monomials 40—42 Rule for Polynomials and Signs 42—45 Remarks—Theorems Proved 45—48 Of Factoring Polynomials—Rule 49—52 Signification of Monomials—Rule 49—52 Signification of Polynomials—Rule 54—56 Remarks 57—61 When m is entire, am—bm is divisible by a—b 61—62 CHAPTER III.	ALGEBRA—Definitions—Explanation of the Algebraic Signs	1—28
CHAPTER II. OF ADDITION, SUBTRACTION, MULTIPLICATION, AND DIVISION. Addition—Rule	Similar Terms—Reduction of Similar Terms	28-30
OF ADDITION, SUBTRACTION, MULTIPLICATION, AND DIVISION. Addition—Rule	Problems—Theorems—Definition of—Question	31—33
Addition—Rule 33—36 Subtraction—Rule—Remark 36—40 Multiplication—Rule for Monomials 40—42 Rule for Polynomials and Signs 42—45 Remarks—Theorems Proved 45—48 Of Factoring Polynomials 48—49 Division of Monomials—Rule 49—52 Signification of the Symbol ao 52—54 Division of Polynomials—Rule 54—56 Remarks 57—61 When m is entire, am—bm is divisible by a—b 61—62 CHAPTER III.	CHAPTER II.	
Subtraction—Rule—Remark 36—40 Multiplication—Rule for Monomials 40—42 Rule for Polynomials and Signs 42—45 Remarks—Theorems Proved 45—48 Of Factoring Polynomials 48—49 Division of Monomials—Rule 49—52 Signification of the Symbol ao 52—54 Division of Polynomials—Rule 54—56 Remarks 57—61 When m is entire, am—bm is divisible by a—b 61—62 CHAPTER III.	OF ADDITION, SUBTRACTION, MULTIPLICATION, AND DIVI	sion.
Multiplication—Rule for Monomials 40—42 Rule for Polynomials and Signs 42—45 Remarks—Theorems Proved 45—48 Of Factoring Polynomials 48—49 Division of Monomials—Rule 49—52 Signification of the Symbol ao 52—54 Division of Polynomials—Rule 54—56 Remarks 57—61 When m is entire, am—bm is divisible by a—b 61—62 CHAPTER III.	Addition—Rule	33—36
Rule for Polynomials and Signs 42—45 Remarks—Theorems Proved 45—48 Of Factoring Polynomials 48—49 Division of Monomials—Rule 49—52 Signification of the Symbol ao 52—54 Division of Polynomials—Rule 54—56 Remarks 57—61 When m is entire, am—bm is divisible by a—b 61—62 CHAPTER III.	Subtraction—Rule—Remark	36-40
Remarks—Theorems Proved. 45—48 Of Factoring Polynomials. 48—49 Division of Monomials—Rule. 49—52 Signification of the Symbol ao. 52—54 Division of Polynomials—Rule. 54—56 Remarks. 57—61 When m is entire, am—bm is divisible by a—b. 61—62 CHAPTER III.	Multiplication—Rule for Monomials	40-42
Of Factoring Polynomials 48—49 Division of Monomials—Rule 49—52 Signification of the Symbol ao 52—54 Division of Polynomials—Rule 54—56 Remarks 57—61 When m is entire, am—bm is divisible by a—b 61—62 CHAPTER III.	Rule for Polynomials and Signs	42-45
Division of Monomials—Rule. 49—52 Signification of the Symbol a^0 . 52—54 Division of Polynomials—Rule. 54—56 Remarks. 57—61 When m is entire, a^m-b^m is divisible by $a-b$. 61—62 CHAPTER III.	Remarks—Theorems Proved	45-48
Signification of the Symbol ao. 52—54 Division of Polynomials—Rule. 54—56 Remarks. 57—61 When m is entire, am—bm is divisible by a—b. 61—62 CHAPTER III.	Of Factoring Polynomials	48-49
Signification of the Symbol ao. 52—54 Division of Polynomials—Rule. 54—56 Remarks. 57—61 When m is entire, am—bm is divisible by a—b. 61—62 CHAPTER III.	Division of Monomials—Rule	49-52
Division of Polynomials—Rule		52-54
Remarks		5 45 6
CHAPTER III.	Remarks	5761
	When m is entire, a^m-b^m is divisible by $a-b$	6162
ALGEBRAIC FRACTIONS.	CHAPTER III.	
	ALGEBRAIC FRACTIONS.	
Definition—Entire Quantity—Mixed Quantity	Definition—Entire Quantity—Mixed Quantity	6265
	Reduction of Fractions	65—6 9
	To Reduce a Fraction to its Simplest Form	70
	To Reduce a Mixed Quantity to a Fraction	

ARTICLES

To Reduce a Fraction to an entire or Mixed Quantity	72
To Reduce Fractions to a Common Denominator	73
To Add Fractions	74
To Subtract Fractions	75
To Multiply Fractions	76
To Divide Fractions	77
Results from adding to both Terms of a Fraction	78
results from adding to both Terms of a Fraction	
CHAPTER IV.	
EQUATIONS OF THE FIRST DEGREE.	
Definition of an Equation—Different Kinds—Properties of Equations	79—86
Principles in the Solution of Equations—Axioms	86—87
Transformation of Equations—First and Second	87—92
Resolution of Equations of the First Degree—Rule	92—94
Questions involving Equations of the First Degree	9495
Equations with two or more Unknown Quantities	95—96
Elimination—By Addition—By Subtraction—By Comparison	96—103
Indeterminate Problems—Questions involving two or more unknown	00 100
Quantities	103—104
Theory of Negative Quantities—Explanation of the Terms Nothing	100-104
and Infinity	104—114
Inequalities	114—116
	111 110
. CHAPTER V.	
EXTRACTION OF THE SQUARE ROOT OF NUMBERS FORM	ATION OF
THE SQUARE AND EXTRACTION OF THE SQUARE ROOT	
BRAIC QUANTITIES.	OF ALGE
	440 440
Extraction of the Square Root of Numbers	116—118
Of Incommensurable Numbers	118
Extraction of the Square Root of Fractions Extraction of the Square Root of Algebraic Quantities	118—124
Of Monomials	124
	124—127
Of Polynomials	127—130
Calculus of Radicals of the Second Degree	130—132
Addition and Subtraction—Of Radicals	132—133
Multiplication, Division, and Transformation	133—137
CHAPTER VI.	
EQUATIONS OF THE SECOND DEGREE.	
Equations of the Second Degree	137—139
Involving two Terms	139—140
Complete Equations of the Second Degree	140—141
• · · · · · · · · · · · · · · · · · · ·	

CONTENTS.	7
·	ARTICLES
Discussion of Equations of the Second Degree	141—150
Problem of the Lights	150—151 151—154
Of Trinomial Equations	154157
Equations with two or more Unknown Quantities	157—159
Equations with two of more Onknown Quantities	101—100
CHAPTER VII.	
OF PROPORTIONS AND PROGRESSIONS.	
How Quantities may be compared together	159
Arithmetical Proportion Defined	159
Geometrical Proportion Defined	159
Arithmetical Proportion—Sum of Extremes	160
Arithmetical Progression-Increasing and Decreasing	161
Value of Last Term—How to find it	162
How to find last term in a Decreasing Series	163
Sum of two Terms equi-distant from Extremes	164
To find Sum of all the Terms	164
General Formulas	165
To find the first Term	165
To find the Common Difference	165
To find any Number of Means between two Numbers	166
The Whole makes a continued Series	167
GEOMETRICAL PROPORTION.	
Ratio Defined	168
Proportion Defined	169
Antecedents and Consequents Defined	170
Mean Proportional Defined	171
Proportion by Inversion—or Inversely	172
Proportion by Alternation	173
Proportion by Composition	174
Proportion by Division	175
Equi-multiples are Proportional	176
Reciprocal Proportion Defined	177
Product of Extremes equal to the Product of the Means	178
To make a Proportion from four Quantities	179
Square of middle Term equal to Product of Extremes	180 181
Four Proportionals are in Proportion by Alternation Proportion by Equality of Ratios	181 182
Four Proportionals are Proportional Inversely	183
Four Proportionals are in Proportion by Composition or Division	184
Equi-multiples have the same Ratio as the Quantities	185
Proportion by augmenting Antecedent and Consequent	186
·O	

CONTENTS.

Proportion by adding Antecedent and Consequent	ARTICLES 187
The Powers of Proportionals are in Proportion	188
The Products of Proportionals are in Proportion	189
Geometrical Progression Defined	190
Value of the Last Term	191
To find the Sum of the Series	192
To find the Sum of the Terms of a Decreasing Progression	193
When the Sum becomes 0	194
To find any Number of mean Proportionals between two Numbers	195
Progressions having an Infinite Number of Terms	195 196
riogressions having an immine number of lemis	190
CHAPTER VIII.	
FORMATION OF POWERS, AND EXTRACTION OF ROOTS OF	ANY DE-
GREE WHATEVER CALCULUS OF RADICALS INDETERM	NATE CO-
EFFICIENTS.	
Formation of Powers	197—199
Theory of Permutations and Combinations	199202
Binomial Theorem	202206
Consequences of Binomial Theorem	206209
Extraction of the Cube Roots of Numbers	209-213
To Extract the nth Root of a Whole Number	213—215
Extraction of Roots by Approximation	215—218
Cube Root of Decimal Fractions	218
Any Root of a Decimal Fraction	219
Formation of Powers and Extraction of Roots of Algebraic Quan-	
tities	. 220
Of Monomials—Of Polynomials	221—224
Calculus of Radicals—Transformation of Radicals	224—227
Addition and Subtraction of Radicals	227
Multiplication and Division	228
Formation of Powers and Extraction of Roots	229 230—232
Different Roots of Unity	230232
Theory of Exponents	233
Multiplication of Quantities with any Exponent	234
Division	235
Formation of Powers	236
Extraction of Roots	237
Method of Indeterminate Co-efficients	238—243
Recurring Series	243
Binomial Theorem for any Exponent	244-245
Applications of the Binomial Theorem	245246
	

CONTENTS.	9
	ARTICLES
Summation of Series	.246
Summation of Infinite Series	247
CHAPTER IX.	
CONTINUED FRACTIONS EXPONENTIAL QUANTITIES LOG	ARITHMS.
-FORMULAS FOR INTEREST.	
Continued Fractions	248—254
Exponential Quantities	240—254 255
Theory of Logarithms	256258
Multiplication and Division	258-260
Formation of Powers and Extraction of Roots	260—262
General Properties	262-266
Logarithmic and Exponential Series—Modulus	266-270
Transformation of Series	270—272
Of Interpolation	272
Of Interest	273
CHAPTER X.	
GENERAL THEORY OF EQUATIONS.	
General Properties of Equations	274285
Of the Greatest Common Divisor	285—294
Transformation of Equations	294—296
Remarks on Transformations.	296
Derived Polynomials	297—300
Equal Roots	300-303
Elimination	303
By Means of Indeterminate Multipliers	304
By Means of the Common Divisor	305-307
Method of finding the Final Equation	307-309
CHAPTER XI.	
RESOLUTION OF NUMERICAL EQUATIONS.—STURMS' THE	
General Principles	309
First Principle	310
Second Principle	311
Third Principle	312
Limits of Real Roots	314-317
LIPTING TO LIMITS OF POSITIVE MONTS	217

CONTENTS.

	•	ARTICLES
	Smallest Limit in Entire Numbers	318
•	Superior Limit of Negative Roots-Inferior Limit of Positive and	
	Negative Roots	319
•	Consequences	320-327
	Descartes' Rule	327-330
	Commensurable Roots of Numerical Equations	330-333
	Sturms' Theorem	333-341
	Young's Method of resolving Cubic Equations	342-345
	Method of Resolving Higher Equations	345

3. What are the entire roots of the equation $15x^5 - 19x^4 + 6x^3 + 15x^2 - 19x + 6 = 0?$

4. What are the entire roots of the equation $9x^6 + 30x^5 + 22x^4 + 10x^3 + 17x^2 - 20x + 4 = 0.$

Sturms' Theorem.

333. The object of this theorem is to explain a method of determining the number and places of the real roots of equations involving but one unknown quantity. Let

$$X=0\ldots(1),$$

represent an equation containing the single unknown quantity x; X being a polynomial of the m^{th} degree with respect to x, the co-efficients of which are all real. If this equation should have equal roots, they may be found and divided out as in Art. 302, and the following reasoning be applied to the equation which would result. We will therefore suppose X=0 to have no equal roots.

334. Let us denote the first-derived polynomial of X by X_1 , and then apply to X and X_1 a process similar to that for finding their greatest common divisor, differing only in this respect, that instead of using the successive remainders as at first obtained, we change their signs, and take care also, in preparing for the division, neither to introduce nor reject any factor except a positive one.

If we denote the several remainders, in order, after their signs have been changed, by $X_2, X_3 \ldots X_r$, which are read X second, X third, &c., and denote the corresponding quotients by $Q_1, Q_2 \ldots Q_{r-1}$, we may then form the equations

$$X = X_{1}Q_{1} - X_{2} \dots (2),$$

$$X_{1} = X_{2}Q_{2} - X_{3}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$X_{n-1} = X_{n}Q_{n} - X_{n+1}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$X_{r-2} = X_{r-1}Q_{r-1} - X_{r}$$

Since by hypothesis, X = 0 has no equal roots, no common divisor can exist between X and X_1 (Art. 300). The last remainder $-X_{rr}$ will therefore be different from zero, and independent of x.

335. Now, let us suppose that a number p has been substituted for x in each of the expressions X, X_1 , X_2 ... X_{r-1} ; and that the signs of the results, together with the sign of X_r , are arranged in a line one after the other: also that another number q, greater than p, has been substituted for x, and the signs of the results arranged in like manner.

Then will the number of variations in the signs of the first arrangement, diminished by the number of variations in those of the second, denote the exact number of real roots comprised between p and q.

336. The demonstration of this truth mainly depends upon the four following properties of the expressions X, X_1, \ldots, X_n , &c.

I. Let a be a root of the equation X = 0. If we substitute a + u for x, and designate by A what X becomes, and denote the derived polynomials by A', A'', A''', &c.; we shall have (Art. 299),

$$A + A'u + \frac{A''}{2}u^2 \cdot \cdot \cdot \cdot + u^m.$$

But since by hypothesis, a is a root of the equation X = 0, we have A = 0, and hence the above expression becomes

$$u(A' + \frac{A''}{2}u + \frac{A'''}{2 \cdot 3}u^2 \cdot \cdot \cdot + u^{n-1});$$

in which A' is not zero, since the equation X = 0 is supposed not to contain equal roots. Now we say, that u can be made so small, that the sign of the quantity within the parenthesis shall be the same as that of its first term.

We attain this object, by finding for u a value which shall render, numerically,

$$A' > \frac{A''}{2}u + \frac{A'''}{2 \cdot 3}u^2 + \&c...u^{n-1};$$

that is,
$$A' > u \left(\frac{A''}{2} + \frac{A'''}{2 \cdot 3} u + \&c. \dots u^{n-2} \right);$$

a condition which will always be fulfilled (Art. 315), when

$$u = \text{ or } < \frac{A'}{K + A'}$$
 K being the greatest co-efficient of u .

II. If any number be substituted for x in these expressions, it is impossible that any two consecutive ones can become zero at the same time.

For, let X_{n-1} , X_n , X_{n+1} , be any three consecutive expressions. Then among equations (3), we shall find

$$X_{n-1}=X_nQ_n-X_{n+1}\ldots(4),$$

from which it appears that, if X_{n-1} and X_n should both become 0 for a value of x, X_{n+1} would be 0 for the same value; and since the equation which follows (4) must be

$$X_n = X_{n+1}Q_{n+1} - X_{n+2},$$

we shall have $X_{n+2} = 0$ for the same value, and so on until we should find $X_r = 0$, which cannot be; hence, X_{n-1} and X_n cannot both become 0 for the same value of x.

III. By an examination of equation (4), we see that if X_n becomes 0 for a value of x, X_{n-1} and X_{n+1} must have contrary signs; that is, if any one of the expressions is reduced to 0 by the substitution of a value for x, the preceding and following ones will have contrary signs for the same value.

IV. Let us substitute a + u for x in the expressions X and X_1 , and designate by U and U_1 what they respectively become under this supposition. Then (Art. 297), we have

$$U = A + A'u + A'' \frac{u^2}{2} + &c.$$

$$U_1 = A_1 + A'_1 u + A''_1 \frac{u^2}{2} + &c.$$

in which A, A', A'', &c., are the results obtained by the substitution of a for x, in X and its derived polynomials; and A_1 A'_1 &c., are similar results derived from X_1 . If now, a be a root of the proposed equation X = 0, then A = 0, and since A' and A_1 are each derived from X_1 , by the substitution of a for x, we have $A' = A_1$, and equations (5) become

$$U = A'u + A'' \frac{u^2}{2} + \&c.$$

$$U_1 = A' + A'_1 u + \&c.$$
... (6).

Now, the arbitrary quantity u may be taken so small that when added to a, it will but insensibly increase it, and when subtracted from a, it will but insensibly diminish it; in which cases, the signs of the values of U and U_1 will depend upon the signs of their first terms; that is, they will be alike when u is positive or when a + u is substituted for x, and unlike when u is negative or when

a-u is substituted for x. Hence, if a number insensibly less than one of the real roots of X=0 be substituted for x in X and X_1 , the results will have contrary signs, and if a number insensibly greater than this root be substituted, the results will have the same sign.

337. Now, let any number as k, algebraically less, that is, nearer equal to $-\infty$, than any of the real roots of the several equations

$$X = 0, X_1 = 0 \dots X_{r-1} = 0,$$

be substituted for x in them, and the signs of the several results arranged in order; then, let x be increased by insensible degrees, until it becomes equal to h the least of all the roots of the equations. As there is no root of either of the equations between h and h, none of the signs can change while h is less than h (Art. 311), and the number of variations and permanences in the several sets of results, will remain the same as in those obtained by the first substitution.

When x becomes equal to h, one or more of the expressions X, X_1 , &c., will reduce to 0. Suppose X_n becomes 0. Then, as by the second and third properties above explained, neither X_{n-1} nor X_{n+1} can become 0 at the same time, but must have contrary signs, it follows that in passing from one to the other (omitting $X_n = 0$), there will be one and only one variation and since their signs have not changed, one must be the same as, and the other contrary to, that of X_n , both before and after it becomes 0; hence, in passing over the three, either just before X_n becomes 0 or just after, there is one and only one variation. Therefore, the reduction of X_n to 0 neither increases nor diminishes the number of variations; and this will evidently be the case, although several of the expressions X_1 , X_2 , &c., should become 0 at the same time.

If x = h should reduce X to 0, then h is the least real root of the proposed equation, which root we denote by a; and since by the fourth property, just before x becomes equal to a, the signs of X and X_1 are contrary, giving a variation, and just after passing it (before x becomes equal to a root of $X_1 = 0$), the signs are the same, giving a permanence instead, it follows that in passing this root a variation is lost. In the same way, increasing x by insensible degrees from x = a + u until we reach the root of X = 0 next in order, it is plain that no variation will be lost or gained in passing any of the roots of the other equations, but that

in passing this root, for the same reason as before, another variation will be lost, and so on for each real root between k and the number last substituted, as g, a variation will be lost until x has been increased beyond the greatest real root, when no more can be lost or gained. Hence, the excess of the number of variations obtained by the substitution of k over those obtained by the substitution of g, will be equal to the number of real roots comprised between k and g.

It is evident that the same course of reasoning will apply when we commence with any number p, whether less than all the roots or not, and gradually increase x until it equals any other number q. The fact enunciated in Art. 335 is therefore established.

338. In seeking the number of roots comprised between p and q, should either p or q reduce any of the expressions X_1 , X_2 , &c., to 0, the result will not be affected by their omission, since the number of variations will be the same.

Should p reduce X to 0, then p is a root, but not one of those sought; and as the substitution of p + u will give X and X_1 the same sign, the number of variations to be counted will not be affected by the omission of X = 0.

Should q reduce X to 0, then q is also a root; and as the substitution of q - u will give X and X_1 contrary signs, one variation must be counted in passing from X to X_1 .

339. If in the application of the preceding principles, we observe that any one of the expressions $X_1, X_2 \ldots \&c.$, X_n for instance, will preserve the same sign for all values of x in passing from p to q, inclusive, it will be unnecessary to use the succeeding expressions, or even to deduce them. For, as X_n preserves the same sign during the successive substitutions, it is plain that the same number of variations will be lost among the expressions $X, X_1, \&c. \ldots$ ending with X_n as among all including X_r . Whenever then, in the course of the division, it is found that by placing any of the remainders equal to 0, an equation is obtained with imaginary roots only (Art. 325), it will be useless to obtain any of the succeeding remainders. This principle will be found very useful in the solution of numerical examples.

340. As all the real roots of the proposed equation are necessarily included between $-\infty$ and $+\infty$, we may, by ascertaining

the number of variations lost by the substitution of these, in succession, in the expressions $X, X_1 \ldots X_n, \ldots$ &c., readily determine the total number of such roots. It should be observed, that it will be only necessary to make these substitutions in the first terms of each of the expressions, as in this case the sign of the term will determine that of the entire expression (Art. 315).

341. Having thus obtained the total number of real roots, we may ascertain their places by substituting for x, in succession, the values 0, 1, 2, 3, &c., until we find an entire number which gives the same number of variations as $+\infty$. This will be the smallest superior limit of the positive roots in entire numbers.

Then substitute 0, -1, -2, &c., until a negative number is obtained which gives the same number of variations as $-\infty$. This will be, numerically, the smallest superior limit of the negative roots in entire numbers. Now, by commencing with this limit and observing the number of variations lost in passing from each number to the next in order, we shall discover how many roots are included between each two of the consecutive numbers used, and thus, of course, know the entire part of each root. The decimal part may then be sought by some of the known methods of approximation.

EXAMPLES.

1. Let $8x^3 - 6x - 1 = 0 = X$.

The first-derived polynomial (Art. 297), is

$$24x^2 - 6$$
,

and since we may omit the positive factor 6, without affecting the sign, we may write

 $4x^2-1=X_1.$

Dividing X by X_1 , we obtain for the first remainder, -4x-1. Changing its sign, we have

$$4x+1=X_2.$$

Multiplying X_1 by the positive number 4, and then dividing by X_2 , we obtain the second remainder -3; and by changing its sign

$$+3=X_3.$$

The expressions to be used are then

$$X = 8x^3 - 6x - 1$$
, $X_1 = 4x^2 - 1$, $X_2 = 4x + 1$, $X_3 = +3$.

Substituting $-\infty$ and then $+\infty$, we obtain the two following arrangements of signs:

$$-+-+ \dots 3$$
 variations,
 $++++\dots 0$ "

There are then three real roots.

If now, in the same expressions we substitute 0 and +1, and then 0 and -1, for x, we shall obtain the three following arrangements:

For
$$x = +1$$
 + + + + 0 variations,
" $x = 0$ - - + + 1 "
" $x = -1$ - + - + 3 "

As x = +1 gives the same number of variations as $+\infty$, and x = -1 gives the same as $-\infty$, +1 and -1 are the smallest limits in entire numbers. In passing from -1 to 0, two variations are lost, and in passing from 0 to +1, one variation is lost; hence, there are two negative roots between -1 and 0, and one positive root between 0 and +1.

2. Let
$$2x^4 - 13x^2 + 10x - 19 = 0$$
.

If we deduce X, X_1 , and X_2 , we have the three expressions

$$X = 2x^4 - 13x^2 + 10x - 19,$$

$$X_1 = 4x^3 - 13x + 5,$$

$$X_2 = 13x^2 - 15x + 38.$$

If we place $X_2 = 0$, we shall find that both of the roots of the resulting equation are imaginary; hence, X_2 will be positive for all values of x (Art. 325). It is then useless to seek for X_3 and X_4 .

By the substitution of $-\infty$ and $+\infty$ in X, X_1 , and X_2 , we obtain for the first, *two* variations, and for the second *none*; hence, there are two real and two imaginary roots in the proposed equation.

3. Let
$$x^3 - 5x^2 + 8x - 1 = 0$$
.
4. $x^4 - x^3 - 3x^2 + x^2 - x - 3 = 0$.
5. $x^5 - 2x^3 + 1 = 0$.

Discuss each of the above equations.