
MATH 181 NOTES: JANUARY 20, 2022

JESSE LEO KASS

Last class we discussed the biography of T. E. Hart, a professor in nineteenth century
America and one of the first Americans to receive a PhD. In this lecture, we will take a
closer look at what Hart and other mathematics professors were teaching in the 1850s. At
the Citadel Academy, Hart learned college algebra from the textbook Elements of Algebra
on the Basis of M. Bourdon Embracing Sturm’s and Horner’s Theorems and Practical Examples
by Charles Davies.

In this lecture, the treatment of I will discuss Decartes’ Rule of Signs. This is an in-
teresting piece of mathematics that no longer is covered in the college math curriculum.
The rule appears in Chapter XI of Davies book. This is the chapter on solving “numerical
equations” of one variable (i.e. polynomial equations like x2 + 4x+ 5).

The book is organized as a series of numbered “articles.” A typical article was begins
with a statement of a mathematical rule followed by a description why the rule is true
and demonstrating it by examples. Article 277, for instance, explains that, if p and q are
numbers such that f(p) and f(q) have opposite signs, then f has a zero that lies between
p and q.

Decartes’ Rule of Signs appears in Article 293.

FIGURE 1. Descartes Rule in Davies’ textbook

Here’s a more modern formulation of the rule:

Theorem 1 (Descartes’ rule). Let

f(x) = xn + a1x
n−1 + · · ·+ an−1x+ an = 0.
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be a polynomial with real coefficients. Let N(f) equal the number of positive roots (accounting for
multiplicity) of f(x) and V(f) the number of sign changes in the sequence 1, a1, a2, . . . , an (ignore
the zeros). Then

N(f) ≤ V(f).

Davies also states a rule involving the negative roots and the number of permanences.
I am going to ignore this part because it does not involve any new mathematical issues.
The negative roots of f(x) are the same as the positive roots of f(−x), and the number of
permanences of f(x) equals the number variations of f(−x), so we get the rule for negative
roots by applying the above rule to f(−x).

The rule that I stated is arguable stronger than Davies’ rule because it takes into account
multiple roots. Davies’s somewhat unclear on whether he is counting positive roots or
not.

We ended last class by taking a closer look at the mathematics that was taught at Ohio
University in the early 1850s. The algebra course was taught from . This was a standard
textbook that was used throughout the United States.

As the titled indicates, the textbook is based on French textbook by Louis Pierre Marie
(or “M.”) Bourdon. In the introduction, Davies refers to this book as “The Treatise on
Algebra” which is his translation of the original French title “Élémens d’algèbre.” The
textbook isn’t a direct translation of Bourdon’s book. Davies’s book is about four hun-
dred pages while some editions of Bourdon’s book run to four hundred editions. In
the introduction to his book, Davies writes that he used Bourdon’s book as a “model,”
but does not write anything about what specific material he omitted/added and why he
made those decisions, and as far as I can tell, nobody else has looked into this issue. It is a
natural question to study in the history of math, but it also challenging one as it involved
comparing a lengthy textbook written in nineteenth century English with another lengthy
textbook written in French.

Davies’s introduction provides a little more information. He explains that the textbook
developed from his experience teaching from Bourdon’s textbook at “the Military Acad-
emy.” He is referring to the United States Military Academy at West Point. Davies was
a student there and then returned as a professor for a number of years. By the 1850s,
Davies had stopped teaching and was focusing on writing textbooks full-time. He was
very prolific. He wrote over twenty textbooks.

While the presentation and format might be unfamiliar, much of the material should
be familiar. The second chapter covers how to do add, subtract, multiply, etc polynomi-
als. However, the later chapters topics you probably haven’t seen before like continued
fractions and methods for numerically solving polynomial equations like Descartes’ rule
of signs, Sturm’s Theorem, Cardan’s Rule, and Horner’s Method.

Let’s take a close look at Descartes’ rule of signs and Sturm’s Theorem. We’ll start with
Descartes’ rule since it the most simple of the two. The rule says the following:
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Theorem 2 (Descartes’ rule). Let

f(x) = xn + a1x
n−1 + · · ·+ an−1x+ an = 0.

be a polynomial with real coefficients. Let N(f) equal the number of positive roots (accounting for
multiplicity) of f(x) and V(f) the number of sign changes in the sequence 1, a1, a2, . . . , an (ignore
the zeros). Then

V(f) −N(f) = a positive even number.

The usefulness of this rule is that it allows you to figure out some information about the
roots without doing a lot of work (like factoring the polynomial). The rule isn’t widely
taught these days, but it remains useful when estimating roots using a computer. Here’s
an example of how the rule works.

Example 3. Consider the polynomial f(x) = x5−8x3−2x2+3x+1. Descartes’ rule tells us
to look at the sequence 1,−8,−2, 3, 1. In this sequence, there are two sign changes (from
1 to −8 and then from −2 to 3. We deduce that V(f) = 2 and so the number of positive
roots N(f) is a nonnegative number satisfying N(f) ≤ 2 and N(f) is even. In other words,
N(f) = 0 or 2.

If we’re willing to do use a computer, we can say more about the roots. I had the
webapp Demos produce Figure 2. From the graph, it looks like f(x) has 2 roots or, in
other words, N(f) = 2. (But notice that the negative roots are harder to see; it’s unclear if
there’s two of them or three of them.)

FIGURE 2. The graph of f(x)

You can use Wolfram Alpha estimate the roots. The output is in Figure 3. It tells me
that there are two positive solutions r = 2.8794... and r = 0.65270. Wolfram Alpha doesn’t
tell you how it performed this computation, but it is probably using methods similar to
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Descartes’ rule. You should also notice that Wolfram Alpha tells you some false informa-
tion: it tells you that there are two negative solutions that real and all other solutions are
given by complex numbers. In fact, all solutions are real.

FIGURE 3. Wolfram Alpha’s estimates of the roots

Why does Descartes’ rule work? Let’s take a look at some special cases. When n = 1,
the polynomial f simplifies to x+ a1. Then

V(f) =

{
+1 if a1 < 0;

0 otherwise.

This equals Z(f) since the only root of f is x = −a1. So we’ve verified the rule.

What about degree 2. Suppose first that f has two real roots r1 and r2 with r1 < r2. By
expanding out x2 + a1x+ x2 = (x− r1)(x− r2), we get that

a1 =− r1 − r2,

a2 =r1r2.

If r1, r2 < 0, then the sequence of signs is +,+,+, so V(f) = 0. This equals Z(f), so we are
done in this case.

What about when r1, r2 > 0? Then the sequence of signs becomes +,−,+, so V(f) = 2
and we are again done.

The case where r1 < 0 but r2 > 0 is more complicated because the sequence of signs
isn’t uniquely determined. When |r1| is larger then |r2|, the sequence of signs is +,+,−,
but when |r2| is larger, the sequence is +,−,−. However, in both cases, V(f) = 1 which
equals Z(f).

Another important case to consider is where f has no real roots. By the quadratic for-
mula, this can only happen if a2

1 − 4a2 < 0 or equivalently a2 > a2
1/4. In particularly, a1

can be positive or negative, but we must have that a2 > 0. Thus the sequence of signs is
+,±,+ and V(f) = 0 or 2. This is the first case where V(f) does not equal Z(f), but the
conclusions in the rule of signs are still satisfied.
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We’ve skipped a few cases, for example where a1 or a2 equal zero. Those boundary
cases don’t involve any new ideas.

The next case is the cubic case, f(x) = x3 + a1x
2 + a2x + a3. When f has three real

roots r1, r2, r3, we can take cases as in the quadratic case. A result from calculus is that a
polynomial f(x) of degree 3 (or, more generally, odd degree) always has a root. Thus in
the case where f(x) does not have three real roots, we can write it as

f(x) =(x− r)(x2 + ax+ b)

=x3 + (a− r)x2 + (b− ra) − br.

To verify the rule, we need to verify that the number of variations is V(f) = 1 or 3 if
r > 0 and V(f) = 0 or 2 if r < 0. Again, we analyze what happens on a case-by-case
basis. Suppose that r > 0 and |r| is much smaller than |a| and |b. Then a − r has the
same sign as a − r and b − ra has the same sign as b. From our analysis of the quadratic
case, we get that the sign sequence is either +,+,+,− or +,−,+,−. In other words, the
number of variations is either 1 or 3 as the rule claims. Another case to consider if where
r > 0 and |r| is much larger than |a| and |b|, Then the sign sequence is the same as the
sign sequence associated to 1,−r,−ra,−br. This last sequence has sign sequence equal
to either +,−,+,− or +,−,−,−. Again, we have V(f) = 1 or 3, just as the rule predicts.
To complete the argument, we need to continue taking cases until we have covered all
possibilities.

This argument is the contains the essential ideas of the proof in Davies book. Consider
verifying Decartes’s rule for (x− r)f(x), r > 0, when we have already verified the rule for
f(x). We have that N((x− r)f(x)) = 1+N(f(x)), so to complete verify the rule, we needed
to compute that V((x − r)f(x)) = 1 + V(f(x)). This is a lengthy computation in Davies’s
book.

Davies, in fact, does NOT give a valid proof. (Can you spot the error?) Surprisingly,
while Decartes’s rule appeared in several English-language textbooks, a complete proof
that Decartes’s rule was only published in English in 1922 with the book First Course in
the Theory of Equations by L. E. Dickson.

TRANSMISSION

How was Descartes’ rule of signs transmitted to America? Davies tells us that he based
his 1837 textbook on Élémens d’algèbre by Louis Pierre Marie Bourdon. Figure 4 displays
the statement of the rule in Bourdon’s textbook. If you can read French or you plug the
text in to Google Translate, you’ll find that Davies’ version of Descartes’ rule of signs
is a direct translation of the statement from Bourdon. However, this section, and the
rest of the textbook overall, is not a direct translation. For example, Davies followed the
statement of the rule by an example, while Bourdon jumps directly to a proof.

What was Descartes’s role in all of this? He published the rule in La Géométrie. This
was an appendix to his 1637 book Discours de la méthode. Discours itself is a work of phi-
losophy, not mathematics. That is where Descartes coined the phrase “I think, therefore I
am.” La Géométrie was written to illustrate general principles for seeking knowledge that
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FIGURE 4. Bourdon’s statement of Decartes’ rule

he laid out in Discours. For the same purpose, he also wrote appendices on optics and
meteorology.

La Géométrie is a very important book in the history of mathematics. In it, Descartes es-
tablished analytic geometry, more specifically the idea that plane geometry can be studied
by identifying points in the plane with pairs (x, y) of numbers and then working alge-
braically with those pairs. A 1925 translation of the relevant text D. E. Smith and M. L.
Latham is included at the bottom of these notes.

A few things a worth noticing. First, the style is very conversational. Decartes does not
break up his text by Definition, Theorem, Proof, Example, etc as was done in the Davies
and Bourdon texts. Decartes’s rule of signs indeed appears in the text (“An equation
can have as many true roots as it contains changes of sign...”), but he doesn’t call any
particular attention to it even though it is a important, original mathematical result. In
fact, Descartes’ rule of signs is only the second most important result that Decartes states
in that tat selection. He also asserts the Fundamental Theorem of Algebra, the theorem
that a polynomial of degree n has n roots over the complex numbers, and he does so in
an offhanded manner: “Know then that in every equation there are as many distinct roots
as the number of dimensions of the unknown quantity [i.e. the degree of the equation].”

Decartes gives little indication of why the rule of signs is correct, and his statement
of the Fundamental Theorem of Algebra is false (not every degree n polynomial has n
distinct roots: (x − 1)2 = x2 − 2x + 1 only has one). When reading older mathematical
texts, modern readers often assume that the mathematics was more “primitive” in the
past: standards of rigor were weaker, peoples understanding of logic was shakier, etc.
Decartes appears to know exactly what he is doing. In several places, he explicitly states
that he has decided to omit details. The last sentence in the book reads, “I hope that
posterity will judge me kindly, not only as to the things which I have explained, but also to
those which I have intentionally omitted so as to leave to other the pleasure of discovery.”
Decartes quite generally deviated from accepted scholarly practices of his time. He wrote
La Géométrie in French at a time when the written language of scholars was Latin.
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Another thing to notice is that Descartes uses some terminology that seems strange
to a modern reader. He says “dimension of an equation” instead of the “degree of a
polynomial,” and more significantly, refers to negative roots as “false roots.” Describing
negative numbers as “false” was not uncommon during the early 1600s. Positive numbers
can represent observable physical quantities (weight, height, distance,...), while negative
numbers do not, and making sense of them requires a greater measure of abstraction (a
negative numbers describes a decrease in weight, for example). The terms “false” and
“positive” root was used to emphasize this.

FIGURE 5. Descartes’ statement of the rule of signs

Of course, Descartes did not write “false root.” He wrote “fausses racines” because he
was writing in French. This raises another important issue. We need to be very sensitive
to word choices, and this presents a particular challenge when reading a foreign language.
Figure 5 displays the original text that Descartes wrote, while Figure 6 is the translation by
Smith and Latham. This is just one possible way to translate the sentence. When I plugged
the text into Google Translate, I go the text in Figure 7. If you compare the original text,
you will that Smith and Lantham focused on clarify over preserving Descartes’ language.
What Descartes wrote as two sentences. In structure, the text Google Translate produced
is closer to the original, although the resulting English text is clunky. French and English
are pretty similar to each other, and these issues become much more important when we
are working with languages that are very different from each other, English and Akkadian
for example.

FIGURE 6. Translation of Descartes by Smith and Latham

Similar issues arise with mathematical notation. Take a look at the polynomial equation
displayed in Figure 8. The equation is hopefully recognizable as x4 − 4x3 − 19x2 + 106x−
120 = 0, but there are a number of differences (how many can you spot?). The most
notable is that Descartes does not use the modern equality sign “=” but rather a squiggle
that looks somewhat like an ichthus symbol.
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FIGURE 7. Google’s translation of Descartes

FIGURE 8. One of Descartes’ equations

There is a lot more to be said about the transmission of the rule of signs over time and
space. In a footnote, Smith and Latham explain that Descartes’ was not the first person to
state the rule of signs in print. The rule appeared five years earlier in Thomas Harriot’s
book Artis Analyticae Praxis. We could take a close look at that text and try to trace the
rule of signs back further in time. However, we have already covered more than enough
material for one lecture, so I will end here.
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