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We are going to leave ancient Greece and return to nineteenth century America. In
many ways, mathematics at a nineteenth century American university is recognizable
although on a much more modest scale than we are use to. At a typical college, all the
mathematics classes were taught by a single professor, and the topics covered were largely
a mix of what is taught today in high school and in introductory college math classes.
However, a close look at the algebra curriculum shows some topics are rarely taught
today. Take a look at Figure 1 which shows part of the table of contexts from Ficklin’s
Complete Algebra. The last chapter of the cover “The Theory of Equations.” The section
includes a discussion of “Theorem of Descartes.” This is Descartes’ rule of signs which
we saw earlier. Some of the other topics look unfamiliar. Both Sturm’s Theorem and
Horner’s Method are still studied in computational math and parts of computer science.
In this lecture and the next few ones, we will take a look at these topics and trace back
their history.

Both Sturm’s Theorem and Horner’s Method are techniques for estimating the solu-
tions to a polynomial equation f(x) = 0. Let’s begin by describing the modern statement
of Sturm’s theorem.

Sturm’s Theorem concerns a polynomial f(x) that has no repeated roots (so there is no
r such that f(r) = f ′(r) = 0). Using long division, divide f(x) by f ′(x) and let f1(x) be the
negative of the remainder. Thus

f(x) = f ′(x) · q1(x) − f1(x).

FIGURE 1. Part of the table of contents of Ficklin’s textbook
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Then define f2 by dividing f ′(x) by f1(x) and so on until a remainder zero appears. Thus
the polynomials satisfy

f(x) =f ′(x)q1(x) − f1,

f ′(x) =f1(x)q2(x) − f2,

f1(x) =f2(x)q3(x) − f3,

f2(x) =f3(x)q4(x) − f4,

. . . . . .

fn−2(x) =fn−1(x)qn(x) − fn,

fn−1(x) =fn(x)qn(x).

The polynomials f(x), f ′(x), f1(x), . . . , fn(x) form the Sturm sequence associated to f(x).
For a number r ∈ R, let Vf(r) = V(r) denote the number of times the sign varies in the
sequence f(r), f ′(r), f1(r), . . . , fn(r). The significance of the variation is described by the
following theorem of Sturm:

Theorem 1. If r < s, then V(r) − V(s) equal the number of roots which lie in the interval (r, s).

Let’s consider the simple example of f(x) = (x−2)(x+1) = x2+x−2. Then f ′(x) = 2x+1
and polynomial division shows

f(x) =f ′(x) · (1/2x− 1/4) − 7/4.

Thus the Sturm sequence is:

f(x) = x2 + x− 2, f ′(x) = 2x+ 1, f1(x) = 7/4.

Applying Sturm’s theorem in this case is somewhat silly because we already know the
roots (they are x = 2,−1), but let’s illustrate how it used. Figure 1 is a table of the signs at
various values.

x f(x) f ′(x) f1(x)

-5 + - +
0 - + +
5 + + +

TABLE 1. Sturm’s theorem for x2 + x− 2

From the table, we get that

V(−5) =2,

V(0) =1,

V(5) =0.

Because V(−5) − V(5) = 2, f(x) must have two roots that lie between −5 and +5. In fact,
one lies below 0 and one above since V(−5) − V(0) = V(0) − V(5) = 1. In this example,
we could have verified this directly using the quadratic formula. The theorem is more
interesting when the polynomial f(x) is more complicated.
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FIGURE 2. Graph of 2x4 − 13x2 + 10x− 19

An example from the Charles Davies textbook that we looked at earlier is f(x) = 2x4 −
13x2 + 10x− 19. The graph is displayed in Figure 2.

It looks like the polynomial has two zeros, one which is positive and one which is
negative. We can verify this using Sturm’s Theorem. We compute

f(x) =2x4 − 13x2 + 10x− 19,

f ′(x) =8x3 − 26x+ 10,

f1(x) =(13x2)/2− (15x)/2+ 19,

f2(x) =(6546x)/169+ 2870/169

f3(x) = − 252148676/10712529.

r f(r) f ′(r) f1(r) f2(r) f3(r)

-100 + - + - -
0 - + + + -

+100 + + + + -
TABLE 2. Sturm’s theorem for 2x4 − 13x2 + 10x− 19

From this, we deduce that

V(−100) =3,

V(0) =2,

V(+100) =1.

We have confirmed what we say from the graph. The polynomial has two real roots, one
positive and one negative.
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FIGURE 3. Davies’s computation

Davies’s computation is displayed in Figure 3. He simplifies the computation in two
ways. First, he simplifies some of the polynomials by multiplying by a positive constant:
X1 = 1/2 · f ′ and X2 = 2 · f1. He also doesn’t compute f2. The reason for this is that
polynomial is always nonnegative, as can be seen from the graph or the algebraic expres-
sion f1 = 13/2 · ((x − 15/26)2 + 23/26). It follows that the number of sign changes in
f1(r), f2(r), f3(r) is always 1, so we can ignore f2 and f3 when computing V(r) − V(s).

We haven’t discussed why Sturm’s Theorem is true. The key properties of the polyno-
mials f, f1, . . . , fn are the following:

(1) if f(r) = 0, then f ′(r) and f1(r) have the same sign;
(2) if fi(r) = 0, then fi−1(r) and fi+1(r) have opposite signs (and are nonzero);
(3) fn(x) is a nonzero constant.

Let’s call any sequence of polynomials satisfying these conditions a Sturm sequence.

These properties hold by construction. For example, consider the second condition.
Plugging r into the equations defining the polynomials fi(x), we have

fi−1(r) =fi(r)qi(r) − fi+1(r)

= − fi+1(r)

If fi−1(r) = fi+1(r) = 0, then we would have that

fi−2(r) =fi−1(r)qi−1(r) − fi(r)

=0.

Proceedings in this manner, we would get that f(r) = f ′(r) = 0, contradicting the assump-
tion that f(r) has no multiple roots.

Sturm’s theorem in fact holds for any Sturm sequence. This explains why Davies’s
computation is valid. If fi(x) is part of a Sturm sequence, then so is c · fi(x) for some
positive scalar c.

Now let’s see why Sturm’s theorem must hold for any Sturm sequence. Consider what
happens if we take x = r to be very negative and then slowly increase its value. Be-

ing polynomials, the signs of f(x), f1(x),
. . . , fn(x) can only change when some x passes

through a root. The content is that V(x) − V(r) only changes when x passes through a
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FIGURE 4. Graph of x5 − 50x2 + 20x− 2.

root of f(x). When f(s) = 0, all the other polynomials be nonzero, and f(s) must change
sign (since the polynomial has only simple roots). Then other case to consider is where
fi(s) = 0. Without loss of generality, we can assume that fi(x) changes from positive to
negative as x passes through s. The partial sign sequence fi−1(x), fi(x), fi+1(x) then either
changes from +,+,− to +,−,+ or from −,+,+ to −,−,+. In both cases, the total number
of sign changes is zero. This is just a short sketch of an argument. Below I include the
justifications offered by Davies and Ficklin in their textbooks. I encourage you to read
what they wrote and see if it is a complete proof.

Why was Sturm’s theorem included in the algebra textbooks? It is an important al-
gorithm or method for real root isolation. The general idea is that, given a polynomial
f(x), we want to find intervals {(r1, s1), (r2, s2), . . . , (rn, sn)} such that each real root lies
in exactly one interval. In other words, the intervals isolate the roots. Finding these in-
tervals is the first step when applying many algorithms for computing real roots. In the
examples we have seen so far, we can find suitable intervals by examining the graph of
f(x). For example, when f(x) = 2x4 − 13x2 + 10x − 19, it is clear from the graph that the
intervals (−4,−2) and (2, 4) work. A more realistic example is the Mignotte polynomial
x5 − 50x2 + 20x− 2.

The graph of the Mignotte polynomial is shown in Figure 4. It looks like the polynomial
has two real roots: a root lying between 3 and 4 and a positive double root that is close
to zero. In fact, the polynomial does not have a double root. Rather, it has two roots
near zero that are very close together. Separating the two roots is exactly what Sturm’s
theorem is designed to do. Of course, there are example that are much more complicated
than x5 − 50x2 + 20x − 2. Examples that occur in engineering and scientific applications
can exhibit similar behavior but have degree 100 or larger.

In a later lecture, we’ll see how Sturm’s theorem can be combined with Horner’s method
to approximate the roots of a polynomial like x5 − 50x2 + 20x− 2.
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FIGURE 5. The title of Sturm’s paper.

So much for the mathematics behind Sturm’s theorem. What about the history? I’m
actually not entirely clear on why Davies and Ficklin present Sturm’s theorem. Few, if
any, of the American college students who used their textbooks went on to do the sort of
difficult numerical computations that would require an application of Sturm’s theorem.
In general, US higher education at the time focused on rote learning, memorization, and
accurately following instructions. When it was taught, I’m guessing Sturm’s theorem was
viewed as simply a complicated procedure to challenge students, not that different from,
say, conjugating verbs in ancient Greek. Its inclusion in American algebra textbooks is
likely an artifact of textbook authors following the model set by the French mathematics
textbook author M. Bourdon. (Recall looked at his textbook when we studied Descartes’
Rule of Signs.)

In France, and Europe more generally, the situation with Sturm’s theorem was very
different. Mathematical and scientific research was being done a very high level, and
there certainly was a need to provide students with deep training in solving polynomial
equations numerically. At the time, Sturm’s theorem was a relatively recent technique.
The theorem was indeed proved by the French mathematician C. Sturm in 1829. The title
of the paper is displayed as Figure 5.

Sturm’s theorem can still be found in textbooks today, but whole topic of numerically
computing roots to polynomial equations has been transformed by the widespread use
of computers. Today, no serious computation of the roots of a polynomial equation is
done by hand, and as anyone who has taken an algorithms class can tell you, algorithms
that run efficiently on a computer are often very different from those that can easily be
run “by hand.” Sturm’s theorem is relatively inefficient for the purposes of computer
computation, so while it is mentioned in textbooks (proving it is an exercise in Donald
Knuth’s Art of Computer Programming), it does not play a central role.

A worthwhile activity would be to closely read Sturm’s paper, compare it with the
treatment of his theorem in American textbooks, and see how the treatment evolved dur-
ing the twentieth century as computer use became widespread. However, Sturm’s paper
is tough going: it was written in French for research mathematicians. Rather than doing
this, we are going to take a look at the last topic in the textbooks by Davies and Ficklin:
Horner’s method. For us, Horner’s work has one major advantage over Sturm’s: it is
written in English. We’ll see what he said in the next lecture.
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