
MODULI OF GENERALIZED DIVISORS ON THE RULED CUBIC SURFACE

JESSE LEO KASS

ABSTRACT. Here we describe the moduli space of generalized divisors on the ruled cubic
surface.

In this note we describe the moduli space of generalized divisors, or rank 1 reflexive
sheaves, on the ruled cubic surface X. Examples of generalized divisors are line bundles.
These do not have interesting moduli: they are rigid, so the moduli space of line bundles
is just a discrete set of points. The geometry becomes more interesting if we allow sheaves
that fail to be locally free. For example, the elements of the ruling of the surface define
a 1-dimensional family of rank 1 reflexive sheaves. In fact, we will see that this family
contains sheaves that are embedded points of the moduli space.

Recall that the ruled cubic surface is a nonnormal surface projective space whose nor-
malization is the blow-up X̃ := Blp0(P

2
k) of the plane at a point. The linear system of

quadratics passing through p0 embeds X̃ in P4, and X is the image of X̃ under a general
projection π : P4

k 99K P
3
k.

A simplified form of the main theorem is the following:

Theorem 1. Let O(D) be a reflexive rank 1 sheaf on X. If O(D) fails to be locally free along a
curve, then {O(D)} is a connected component of the moduli spaceM(X) of reflexive rank 1 sheaves.

Otherwise, O(D) lies on an irreducible component of dimension ≥ r, where r < ∞ is the
number of closed points where O(D) fails to be locally free.

To state the full result, we need to introduce some notation for rank 1 reflexive sheaves.
The surface X fails to be normal along the curve defined by the conductor ideal. We
denote this curve byDsing. Write D̃sing ⊂ X̃ for its preimage under the normalization map.
The restriction D̃sing → Dsing of the normalization map is a double cover of a rational
curve by a rational curve. The map ramified at two points that we call the pinch points
of X.

In [Har94], Hartshorne describes the rank 1 reflexive sheaves on X as follows. Sheaves
that fail to be locally free at a finite set of points form a group: the almost Picard group
APic(X). Hartshorne constructs a homomorphism

φ = φ1 × φ2 : APic(X)→ Z2 ×Div(D̃sing)/π
∗Div(Dsing)

that is injective with image equal to the set of pairs (a, b; [α]) such that a = deg(α) mod 2.
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The set GPic(X) of all rank 1 reflexive sheaves can be described in terms of APic(X). The
sheaf O(Dsing) is an element of GPic(X) − APic(X), and every element of this set can be
written asO(C+Dsing) for some C ∈ APic(X). Furthermore,O(C1+Dsing) = O(C2+Dsing)
if and only ifO(C1) andO(C2) have the same image in Z2. With this notation, we can state
the main result more precisely:

Definition 2. ForO(D) ∈ APic(X), let h(O(D)) denote the minimal degree of an effective
divisor that represents φ2(O(D)) ∈ Div(D̃sing/π

∗Div(Dsing)).

Theorem 3. If O(D) ∈ GPic(X) − APic(X), then {O(D)} is a connected component ofM(X).

Given a, b, n ∈ Z with a = n mod 2, the subset of sheaves O(D) with φ1(O(D)) = (a, b)
and h(O(D)) = n is an irreducible component of dimension n.

We also prove results about the nonreducedness ofM(X).

Theorem 4. The moduli space M(X) is nonreduced at sheaves that fail to be locally free along a
curve.

If O(D) satisfies φ(O(D)) = (1, 1; [Pinch Point]), then O(D) is an embedded point ofM(X).

Using an Abel map, one can deduce as a corollary analogous results about the Hilbert
scheme Hd,g of degree d, genus g Cohen-Macaulay curves on X.

I. Comparison with past work. The moduli space of rank 1, torsion-free sheaves on an
irreducible projective variety X was constructed by Altman–Kleiman in [AK79, AK80].
When X is a curve, there is a large volume of results on the geometry of the moduli space.
For example, the articles [Reg80, AIK77, KK81] prove that the line bundle locus is dense
if and only if X has at worst plane curve singularities.

When the dimension of X is two or more, there are very few results about the geometry
of M(X). When X is normal, by [Kle05, Theorem 5.4], the line bundle locus is closed and
hence a union of connected component. The construction in [AK75] shows that this is
not true for the larger locus of reflexive sheaves; when X is the cone over a plane cubic (a
normal surface in P3

k), the closure of this locus contains rank 1, torsion-free sheaves which
are not reflexive.

The strongest positive results hold when X is a connected component of the moduli
space M

d
(C) of rank 1, torsion-free sheaves on an integral curve C/k. In this case, the

main result of [Ari13, Theorems B] (extending results from [EK05]) states that the con-
nected component of M(X) containing OX is isomorphic to X itself. The result is proven
by exhibiting an explicit isomorphism, and the construction shows that all elements in
the connected component are Cohen-Maculay (and hence reflexive) sheaves [Ari13, The-
orems A].

Background. Here we collect some basic results from the literature. We introduced the
ruled cubic surface as a birational model of the blow up of the plane, but for later com-
putations, it is useful to have an explicit model. We take X to be defined by the equation

2



f = W2X − Y2Z, i.e. X = Proj k[W,X, Y, Z]/f. With X̃ := Blp0(P
2
k) and p0 := [0, 0, 1], the

normalization map π : X̃→ X is the morphism induced by the morphism P2
k → X defined

in projective coordinates by π(S, T,U) = [ST,U2, SU, T 2]. In terms of this projective model,
the singular locus Dsing is the line {W = Y = 0}. Set D̃sing ⊂ X̃ equal to the preimage of
Dsing. The curve D̃sing is the total transform of the curve {S = 0} ⊂ P2

k, and π : D̃sing → Dsing
is a double cover. The ramification points are the points [0, 1, 0, 0] and [0, 0, 0, 1]. We call
these points the pinch points of X. By abuse of language, we also call their preimages
pinch points.

The cohomology of X is

(1) hi(X,O) =

{
1 if i = 0;
0 otherwise.

To see, use the analogous computation of hi(X̃,O) [Har77, Corollary 2.5] and the short
exact sequence

0→ OX → π∗OX̃ → π∗OD̃sing
/ODsing → 0.

(Use [HP15, Remark 2.7] to show that π∗OD̃sing
/ODsing is indeed the cokernel.)

We now define some divisors that will play an important role. The image Ẽ ⊂ X̃ of the
exceptional divisor is the line E := {X = Z = 0}. An another important class of divisors are
the rulings of X. Given a closed point p ∈ E, write Lp for the unique element of the ruling
that passes through p. Concretely, if p = [b, 0, a, 0], then Lp = {bY = aW,b2X = a2Z}.
A third example of a divisor is a hyperplane section H. By the adjunction formula, the
dualizing sheafωX of X is isomorphic to O(−H).

As mentioned in the introduction, Hartshorne constructed an injection APic(X) →
Z2 × Div(D̃sing)/π

∗Div(Dsing) with image equal to the elements (a, b; [α]) satisfying a =
deg(α) mod 2. The key property of this map is the following one: ifD is an effective divi-
sor that does not containDsing, then let D̃ denote the Zariski closure of π−1(D−D∩Dsing).
The integers (a, b) := φ1(O(D)) are the unique integers satisfying O(D̃) = O(aL̃ − bẼ)

for Ẽ, L̃ ⊂ X̃ equal to the exceptional divisor and the total transform of a line respectively.
The class [α] is the image of the divisor D̃ ∩ D̃sing. With this description, we get that

φ(O(E)) =(0,−1; 0),

φ(O(Lp) =(1, 1; [p]),

φ(O(H)) =(2, 1; 0).

We now turn our attention to the moduli spaceM(X). This scheme represents the étale
sheaf associated to the functor that sends a k-scheme T to the set of isomorphism classes of
flat families of rank 1, torsion-free sheaves parameterized by T . By [AK80, (3.1) Theorem],
this scheme exists and its connected components are proper. The reflexive sheaves form
an open subscheme by [AK79, (5.13) Proposition]. (Note: the statement of the propo-
sition states that the Cohen–Macaulay (or “pseudo-invertible”) sheaves form an open
subscheme, but because X is a surface, [Har94, Corollary 1.8] implies that reflexivity is
equivalent to Cohen–Macaulayness)
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A important tool in studying M(X) is the Abel map from the Hilbert scheme to M(X).
The Hilbert scheme (parameterizing subschemes of X) exists [AK79, (2.8) Corollary] as
a scheme. Furthermore, if we fix the Hilbert polynomial with respect to the ample line
bundle O(D), then the corresponding locus in the Hilbert scheme is a closed and open
subsubscheme that is projective. Let H(X) ⊂ Hilb(X) denote the open subscheme param-
eterizing subschemes that are pure of dimension 1 with no embedded points or, equiva-
lently [Har94, Proposition 2.4], have reflexive ideal sheaf. Given such a subschemeD ⊂ X,
the ideal sheaf O(−D) is Cohen–Macaulay and thus Ext1(O(−D),O) vanishes. We con-
clude by [AK80, 1.10 Theorem] that the formation of O(D) behaves well in families and
thus defines a morphism Abel : H(X)→M(X). The fibers of Abel are the described by the
following lemma which is essentially [AK80, (5.18) Theorem].

Lemma 5. The fiber of Abel : H(X) → M(X) over O(D) is the projective space PH0(X,O(D))
of one-dimensional subspaces of H0(X,O(D)). If H1(X,O(D)) = 0, then Abel is smooth along
the fiber over O(D).

Proof. The morphism Abel is the composition of the morphism D 7→ O(−D) followed by
the involution O(D) 7→ Hom(O(D),O). By [AK80, (1.1.1), (5.17(i))], the fiber of Abel over
O(D) is PHom(O(−D),O) which equals Hom(O,O(D)) = H0(X,O(D)) by reflexivity.

To prove the second statement, consider the local-to-global spectral sequence E2p,q =

Hp(Extq(O(−D),O)) ⇒ Extp+q(O(−D),O). Because O(−D) is reflexive (and hence is
Cohen–Macaulay), we have Ext1(O(−D),O) = 0 and thus

Ext1(O(−D),O) =H1(Ext0(O(−D),O))
=H1(X,O(D)).

�

Remark 6. In Lemma 5, it is important that we work with the open subscheme H(X) of
the Hilbert scheme that parameterizes one-dimensional subschemes D ⊂ X that are pure
and have no embedded points. Indeed, otherwise its ideal sheaf O(−D) fails to be re-
flexive and thus Ext1(O(−D),O) 6= 0 by [Har94, Theorem 1.9]. (Loc. cite implies that
Exti(O(−D),O) 6= 0 for either i = 0 or 1, but we must have Ext0(O(−D),O) = 0 be-
cause O(−D) is torsion-free.) The vanishing of Ext1(O(−D),O) was needed in the proof
of Lemma 5.

Not only does the proof of Lemma 5 fail, but the rule D 7→ Hom(O(−D),O) does not
define a morphism Hilb(X) → M(X). Consider the family of subschemes D ⊂ X ×k
Spec(k[t]) defined by the homogeneous ideal (Y − W,X − Z) ∩ (Y + tW,X − t2Z). For
t0 ∈ k, t0 6= 1, the fiber of D over t0 is the union Dt0 of two disjoint lines lying on X.
In particular, the ideal O(−Dt0) is a rank 1 reflexive sheaf. However, for t0 = 1, the
subscheme is the union of the two lines {(Y − W)(Y + W) = Z = 0} together with an
embedded point at the origin. The dualO(D1) := Hom(O(−D1),O) is the sheaf associated
to just the two lines, i.e.O(H−E). Indeed, the union of the exception divisor and the two
lines {(Y −W)(Y +W) = X − Z = 0} is a hyperplane section, and the natural inclusion
O−D1

→ OE−H induces an homomorphism O(D1) → O(H − E). This homomorphism
must be an isomorphism since it is an isomorphism away from the point [0, 1, 0, 0] and
bother sheaves are reflexive. Now the Euler characteristic of O(Dt0) is 2, but the Euler

4



characteristic of O(D0) is 1, so these two sheaves cannot be the fibers of a flat family
of sheaves over a connected base. (Use [Har94, Proposition 2.9] to compute the Euler
characteristic.) In particular, there is no morphism Hilb(X) → M(X) that sends Dt →
Hom(O(−D),O) for all t.

Almost Cartier Divisors. Here we study the locus inM(X) that corresponds to the almost
Cartier divisors. Our goal is to prove the parts of the main theorem that concern these
divisors: (1) the result that the sheaves O(D) satisfying φ1(O(D)) = (a, b), h(O(D)) = n
for an n-dimensional irreducible component and (2) the result that the sheaves satisfying
φ(O(D)) = (1, 1; 1) are embedded points ofM(X).

We begin by computing the tangent space to M(X) at a general point. Recall that, by
definition, the tangent space toM(X) atO(D) is equal to the set of first order deformations
or equivalently the cohomology group Ext1(O(D),O(D)).

Lemma 7. If O(D) ∈ APic(X), then Hom(O(D),O(D)) = OX.

Proof. When O(D) is a line bundle, this is just the identity Hom(O(D),O(D)) = O(D)∨ ⊗
O(D) = OX. In general, observe that Hom(O(D),O(D)) is naturally isomorphic to an
algebra extension of OX contained in the field of rational functions k(X) on X. (Em-
bed Hom(O(D),O(D)) by sending an endomorphism f to f(s) for s a fixed generator
of the stalk of O(D) at the generic point.) Furthermore, as an algebra extension of OX̃,
Hom(O(D),O(D)) is integral since, if we can pick a presentation of O(D), then we can
represent a given endomorphism by a matrix and then apply the Hamilton–Cayley theo-
rem.

The only integral extensions of OX are π∗OX̃ and OX itself. Away from the finite set
of points where O(D) fails to be locally free, Hom(O(D),O(D)) is isomorphic to OX, so
Hom(O(D),O(D)) cannot equal π∗OX̃. We conclude that Hom(O(D),O(D)) = OX, as
desired. �

Lemma 8. If O(D) ∈ APic(X), then the natural maps

Exti(O(D),O(D))→ H0(Exti(O(D),O(D))

are isomorphisms.

Proof. We use the local-to-global spectral sequence

Ep,q2 = Hp(Extq(O(D),O(D))⇒ Extp+q(O(D),O(D)).

For i > 0, the sheaf Exti(O(D),O(D)) is supported on the locus where O(D) failed to be
locally free. Since this is a finite set, we have Exti(O(D),O(D)) = 0 for i > 0. For i = 0,
Lemma 7 states that Hom(O(D),O(D)) = O, and Hi(X,O) = 0 for i > 0 by Equation (1).
We conclude from the spectral sequence that the natural maps H0(Exti(O(D),O(D)) →
Ext1(O(D),O(D)) are isomorphisms. �

Proposition 9. Suppose that O(D) ∈ APic(X) satisfies φ2(O(D)) = [α0] for α0 ∈ Div(D̃sing)
an effective divisor with support disjoint from the pinch points [0, 1, 0] and [0, 0, 1]. Then

dimExt1(O(D),O(D)) = h([α0]).
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Proof. By Lemma 8, it is equivalent to show that h0(Ext1(O(D),O(D)) = h([α0])). The
groupH0(Ext1(O(D),O(D))) breaks up as a direct sum over its zero dimensional support.
The stalk of Ext1(O(D),O(D)) at p remains unchanged if we pass from X to the completed
local ring ÔX,p. Since we assumed that the support of α0 does not contain a pinch point,
ÔX,p0 is isomorphic to k[x, y, z]/xy. By the classification of rank 1 reflexive sheaves, the
completed stalk ofO(D) must be isomorphic to the idealM := (y, zn) for some n. We will
prove the theorem by showing that n = dimExt1(M,M).

From the theory of matrix factorizations, a free resolution ofM is

· · ·→ O2 B−→ O2 A−→ O2 →M→ 0,

where

A :=

(
x zn

0 −y

)
and B :=

(
y zn

0 −x

)
.

Thus Ext1(M,M) is computed as the first homology group of the complex

· · ·←M2 Tr(B)←− M2 Tr(A)←− M2 ← 0.

Here Tr(A) denotes the transpose.

An elementary computation shows that the homology group ker(Tr(B))/ coker(Tr(A))
has as k-basis the elements (0, x), (0, zx), . . . , (0, zn−1x). In particular, the dimension is
n. �

Lemma 10. The Abel map Abel : H(X) → M(X) induces an isomorphism over the locus of
sheaves O(D) ∈ APic(X) satisfying φ1(X) = (1, 1) and h(O(D)) = 1. This common scheme is
a nonreduced curve isomorphic to the scheme obtained from gluing

(2) U1 := Spec(k[a1, b1, c1, d1]/(a1, b1 − c
2
1, c1d1, d

2
1))

to

(3) U2 := Spec(k[a2, b2, c2, d2]/(c2, a
2
2 − d2, a2b2, b

2
2))

along U1 − {0}→ U2 − {0} via the morphism induced by a2 7→ −1/c1.

The two sheaves satisfying φ2(O(D)) = [pinch point] correspond to the origin in U1 and the
origin in U2.

Proof. Suppose that O(D) ∈ APic(X) satisfies φ1(X) = (1, 1) and h(O(D)) = 1. Then

(4) hi(X,O(D)) =

{
1 if i = 0;
0 if i > 0.

To see this, observe thatD can be taken to a suitable ruling of X. Since this divisor is effec-
tive, h0(X,O(D)) ≥ 1, and h2(X,O(D)) = 0 by coherent duality. (We have h2(X,O(D)) =
h0(X,ωX ⊗ O(−D)). This second group must vanish since ωX ⊗ O(−D) = O(−H − D)
is the inverse of a non-empty effective divisor.) From the following short exact sequence
(taken from [Har94, Proposition 2.9])

0→ O → O(D)→ ωD ⊗ω−1
X → 0,
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we get that χ(X,O(D)) = 1, so we must have h1(X,O(D)) = 0.

From Lemma 5, we deduce that the Abel map Hilb(X) → M(X) is an isomorphism
over a Zariski open neighborhood containing the subset of interest. We complete the
proof by explicitly computing on Hilb(X). Subschemes D ⊂ X with φ(O(D)) = (1, 1) and
h(O(D)) = 1 are lines contained in X. Consider the equations

X− a1W − b1Z = Y − c1W − d1Z = 0.

They define an open embedding Spec(k[a1, b1, c1, d1])→ Gr(3, 1) in the Grassmannian of
lines, and we compute the intersection Spec(k[a1, b1, c1, d1])∩Hilb(X). It is defined by the
equations that are the coefficients of the following equations:

(S2(a1S+ b1T) − (c1S+ d1T)
2S)

The description for U1 is given by expanding out this expression. The scheme U2 is ob-
tained by working instead with the equations

W − a2Y − b2X = Z− c2Y − d2X = 0.

�

Corollary 11. The moduli space M(X) has an embedded point at the sheaves O(D) satisfying
φ(O(D)) = (1, 1; [pinch point]).

Proof. This follows immediate from Equations (2) and (3). �

Lemma 12. Suppose that L ⊂ X is the ruling defined by the homogeneous ideal generated by the
polynomials αW − Y, X− α2Z with α ∈ k, α 6= 0.

Let n > 0 be a given integer. Then the multiple n · L is the effective divisor defined by the ideal
generated by the polynomials

(5) NFn−2, NFn−3G, . . . ,NFn−i−iGi, . . . , NGn−2, Gn.

Here
F := αW − Y,G := X− α2Z,N :=WG+ 2αFZ.

Proof. Recall that, by definition, the ideal of n · L is the reflexive hull of the n-th power
of the ideal of L. Temporarily set Jn equal to the ideal of the subscheme defined by the
homogeneous ideal (5) and I = IL equal to the ideal of L. With this notation, our goal is to
prove that Jn is the reflexive hull of InL .

Observe that the polynomial N is defined so that

WN =W2G+ 2αWF

=W2X− α2W2 + (αW + Y + F)F

=W2X− α2W2 + (αW + Y)(αW − Y) + F2

=W2X− α2W2 + α2W2 − Y2 + F2

=(W2X− Y2Z) + F2

=F2 on the surface X.
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Now observe that we have the containment InL ⊂ Jn because

Fn =F2Fn−2,

=WNFn−2,

Fn−1G =WNFn−3G,

. . . . . .

Fn−iGi =WNFn−i−2Gi,

. . . . . .

F2Gn−2 =WNGn−2,

FGn−1 =1/(2α)NGn−1 − 1/(2α)WGn.

These equations also show that the containment InL ⊂ Jn becomes an equality after restrict-
ing to the complement of {W = 0}. Trivially, the containment is an equality away from the
support of OX/Jn, so the two ideals are equal away from the union of that support and
{W 6= 0}, and this is just the closed point given in projective coordinates by [0, α2, 0, 1].
Since this subset has codimension 2, we deduce that InL and Jn have the same reflexive
hull.

To complete the proof, we need to show that Jn is reflexive. In fact, it is enough to show
this holds for the restriction of Jn to the affine open Spec(k[w, x, y]/w2x − y2) (i.e. the
complement of {Z = 0}) since InL is automatically reflexive away from the singular locus.
By abuse of notation, let Jn also denote the ideal in k[w, x, y]/w2x− y2. To show that Jn is
reflexive, it is enough to construct an isomorphism

(6) k[w, x, y]/(Jn +w
2x− y2) ∼= k[s, t]/(t− α)n.

Indeed, given such an isomorphism, we deduce that the ideal Jn defines a subscheme of
pure codimenion 1 and hence is reflexive.

To show (6), consider the the homomorphism

φ : O → k[s, t],

w 7→ s, x 7→ t2, y 7→ st.

An algebra computation show that φ induces a homomorphism φ : O/Jn → k[s, t]/(t −

α)n. To see that φ is an isomorphism, observe that O/Jm contains a square root of x since
it can be expressed as the appropriate truncated power series:

x1/2 =
(
α2 + x− α2

)1/2
=

n−1∑
i=0

(
1/2

i

)
α1−i(1− α2)i

=

n−1∑
i=0

(
1/2

i

)
α1−iGi.
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Thus we have a well-defined homomorphism ψ : k[s, t]/(t− α)n → O/Jn defined by

ψ(s) =w,

ψ(t) =

n−1∑
i=0

(
1/2

i

)
α1−iGi.

The homomorphism ψ is the inverse of φ because

ψ(φ(w)) =ψ(s)

=w

ψ(φ(x)) =ψ(t2)

=

(
n−1∑
i=0

(
1/2

i

)
α1−iGi

)2
ψ(φ(y)) =ψ(st)

=w ·

(
n−1∑
i=0

(
1/2

i

)
α1−iGi

)
�

’

Lemma 13. Let n > 0 be an integer and L ⊂ X be a ruling that does not pass through a pinch
point. Then there exists a k[t]-flat subschemeD ⊂ X×kA1

k such that the fiber over 0 ∈ A1
k is n ·L

and the fiber over a general point is n disticnt rulings of X.

Proof. We will construct a family over Speck[t] such that the fiber over 0 is n · L and the
general fiber is the union of n distinct lines.

By Lemma 12, the subscheme n · L is defined by the homogeneous ideal generated by
the polynomials

NFn−2, NFn−3G, . . . ,NFn−i−iGi, . . . ,NGn−2, and Gn.

Fix n distinct nonzero scalars β1, β2, . . . , βn ∈ k. Then set

`1(a) =β1t+ α,

`2(a) =β2t+ α,

. . .

`n(a) =βnt+ α

and define Di ⊂ X ×k A1
k to be the closed subscheme defined by the homogeneous ideal

generated by
`i(t)W − Y and X− `(t)2Z.

We will show that the union D1 + . . .Dn satisfies the desired properties.
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First, let us show that the fiber ofD1+ · · ·+Dn over 0 is contained in n ·L. We will show
containment of the corresponding ideals in the affine neighborhood Spec(k[w, x, y]/w2x−
y2), i.e. the neighborhood where Z 6= 0. Verifying equality in the other affine neighbor-
hoods is easier since there all the subschemes are Cartier, and we leave the details to the
interested reader.

On Spec(k[w, x, y]/w2x− y2), the ideal of n · L is generated by the polynomials

N(w, x, y, 1)Fn−2(w, x, y, 1), N(w, x, y, 2)Fn−2(w, x, y, 1)G(w, x, y, 1), . . . ,

N(w, x, y, 1)Gn−2(w, x, y, z), and Gn(w, x, y, 1).

To ease notation, we denote the polynomials N(w, x, y, 1), F(w, x, y, 1), G(w, x, y, 1) by
N, F,G.

Consider first the case where n = 2. The subscheme D1 +D2 is defined by the ideal(
`1(t)w− y, x− `1(t)

2
)
∩
(
`2(t)w− y, x− `2(t)

2
)
.

This intersection contains the product
(
x− `1(t)

2)
)
·
(
x− `2(t)

2)
)
, so the ideal of the special

fiber of D1 +D2 contains the specialization
(
x− `1(0)

2)
)
·
(
x− `2(0)

2)
)
= G2.

Another element in the intersection is the polynomial (`1(t)·`2(t)w−(`1(t)+`2(t))y+wx.
Indeed, the expression

`1(t) · `2(t)w− (`1(t) + `2(t))y+wx = (`1(t) + `2(a))(`1(t)w− y) +w(x− `21(t)).

shows that the element lies in the first term in the intersection. Reversing the roles of `1
and `2, we see that the ideal also lies in the second term. We conclude that the ideal of the
fiber of D1 +D2 contains

(`1(0) · `2(0)w− (`1(0) + `0(t))y+wx =α2w− 2αy+wx

=N.

This shows that the ideal of the fiber of D1 +D2 contains the ideal of 2 · L or equivalently
(D1 + D2) ∩ X×k {0} ⊂ 2 · L. The subscheme 2 · L has the same Hilbert polynomial as the
general fiber of D1 + D2. We not yet shown that D1 + D2 is k[t]-flat, but we can argue as
follows. The restriction of D1 + D2 → A1

k to A1
k − {0} is k[t, t−1]-flat because it is just a

family of n disjoint lines. Thus if we let D equal to the Zariski closure of the generic fiber
in D1 + D2, then D is k[t]-flat and contained in D1 + D2. By flatness, the fiber of D over 0
has the same Hilbert polynomial as the disjoint union of n lines. This is the same as the
Hilbert polynomial of 2 · L, so the inclusion D ∩ X ×k {0} ⊂ 2 · L must be an equality. We
deduce that D = D1 +D2, so D1 +D2 has the desired properties.

Now suppose that n is arbitrary. Then D1 + · · ·+Dn is defined by(
`1(t)w− y, x− `1(t)

2
)
∩ · · · ∩

(
`n(t)w− y, x− `n(t)

2
)
.

We have just shown that `n−1(t) · `n(t)w−(`n−1(t)+ `n(t))y+wx lies in the intersection of
the last two ideals. Thus if we take the product of this element with n− 2 elements, with
the i-th being either or `i(t)w − y or x − `i(t)2, then we obtain an element of the ideal of
D1 + · · · + Dn. Passing to the special fiber, we get every element of the form NFiGn−2−i.
We get the elementGn by taking the product of `i(t)w−y for i = 1, 2, . . . , n. We complete
the proof by arguing as in the n = 2 case. �
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Corollary 14. Suppose that we are given rulings L1, . . . , Lk of X that do not pass through pinch
points and integers n1, . . . , nk > 0.

Then there exists a nonempty open neighborhood U ⊂ k[t] of 0 ∈ A1
k and a k[t]-flat subscheme

D ⊂ X×kA1
k such that the fiber over 0 ∈ A1

k is n ·L and the fiber over a general point is n disticnt
rulings of X.

Proof. By grouping ni’s, we can assume that the rulings L1, . . . , Lk are distinct. Let Di ⊂
X ×k A1

k be a k[t] flat-family of subschemes such that the fiber over a general point if ni
distinct lines and the fiber over 0 is ni ·Li, i.e. the family constructed in Lemma 13. Define
D ⊂ X×k A1

k to be the union of D1, . . . ,Dk (i.e. the subscheme defined by the intersection
of the corresponding ideals).

There could be points where two families Di and Dj intersect, and at such a point, it
isn’t entirely clear that D → A1

k is k[t]-flat. To address this, observe that D1 ∩ · · · ∩ Dk
is a closed subset of X ×k A1

k that does any points lying above the origin. The projection
pr2 : X×kA1

k → A1
k is proper, so pr2(D1 ∩ · · · ∩ Dk) is a closed subset that does not contain

the origin. Define U := A1
k − pr2(D1 ∩ · · · ∩ Dk). �

Lemma 15. Within the subset APic(X) of M(X), the locus of sheaves with the property that
φ2(O(D)) can be represented by a reduced effective divisor α ∈ Div(D̃sing) are dense.

Proof. Lemma 14 shows that all sheaves of the formO(n1 ·L1+· · ·+nkLk) where n1, . . . , nk
are positive integers and L1, . . . Lk are ruling that do not pass through pinch points.

Now suppose that O(D) is arbitrary. Write φ(O(D)) = (n,m, [α0]) for n = deg(α0) and
α0 an effective divisor of minimal degree. Write α0 = n1p1 + · · · + nkpk + q1 + · · · + ql,
where ni > 1 and the points p1, . . . , pk, q1, . . . , ql are distinct. From the classification of
rank 1 reflexive sheaves on the fold singularity, we deduce that the pinch points are not
among the points p1, . . . , pk.

For i = 1, . . . , k, pick a ruling Li such that φ(O(Li)) = (1, 1, [pi]). Then write n =
deg(α0) + 2a and set b = deg(α0) −m + a. Consider the sheaf O(D − aH − bE) where
H is a hyperplane section and E is the image of the exceptional divisor of X̃. This sheaf
satisfies φ(O(D−aH−bE)) = (deg(α0), deg(α0), [α0]). ThusO(D−aH−bE) has the same
image under φ asO(n1L1+ · · ·+nkLk+M1+ · · ·+Ml). We have already shown that this
last sheaf is a fiber of a family over U ⊂ A1

k with the property that the general fiber is a
disjoint union of rulings. By tensoring this family with the constant family of line bundles
with fiber O(aH + bE), we obtain a family where the one fiber is O(D) and the other
fibers have that the image under φ2 can be represented by a reduced effective divisor. In
particular, O(D) is in the closure of the locus of sheaves O(D ′) such that φ2(O(D ′)) can
be represented by a reduced effective divisor. �

Proposition 16. Two elements O(D1),O(D2) ∈ APic(X) of the almost Picard group lie in the
same irreducible component if and only ifφ1(O(D1)) = φ1(O(D2)) and h(O(D1)) = h(O(D2)).
This common component has dimension h(O(D)) and is regular at every O(D) that has the
property that φ1(O(D)) can be represented by an effective divisor with support disjoint from the
pinch points.
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Proof. Let O(D) ∈ APic(X) be given. Set (a, b) = φ1(O(D)) and α0 := α(O(D)). Write
c = (n− deg(α0))/2 and d = deg(α0) + a− b.

Set U ⊂ H(X) equal to the reduced subscheme Hilbert scheme of rulings on X. This is
the reduced subscheme of the scheme appearing in Lemma 10 (so it is a rational curve
∼= P1

k). Consider the locus V ⊂ U ×k · · · ×k U of distinct rulings inside the α0-fold self-
product of U. The rule (L1, . . . Lk) 7→ O(L1 + · · ·+ LK + cH+ dE) defines a morphism V →
M(V). By classification, the image contains all sheavesO(D) such that φ1(O(D)) = (a, b)
and φ2(O(D)) is a reduced divisor of degree α0. The Zariski closure contains all sheaves
where φ2(O(D)) is possibly nonreduced by Lemma 15. We conclude thatO(D) lies on an
irreducible component ofM(X) of dimension ≥ deg(α0).

We get the reverse inequality, dimension ≤ deg(α0), using Proposition 9. That propo-
sition computes the tangent space to M(X) at a point where φ1(O(D)) = (a, b) and
φ2(O(D)) can be represented by a reduced effective divisor of degree deg(α0) as deg(α0).
We conclude that the dimension of the irreducible component of deg(α0).

Now suppose further that the support of α0 is disjoint from the pinch points. Then
Proposition 9 states that the tangent space dimension to M(X) at O(D) is h(O(D)). Since
this equals the local dimension of M(X), we conclude that the moduli space is regular at
O(D). �

Remark 17. When (a, b) = (1, 1) and n = 1, Lemma 10 implies the stronger result that the
rank 1 reflexive sheaves satisfying φ1(O(D)) = (1, 1) and h(O(D)) = 1 form a connected
component, not just an irreducible component. This is not always the case. Consider
the case where (a, b) = (−2,−2) and n = 2. Then the irreducible component in question
meets a component containing the ideal sheaves of the union of a hyperplane and a point.

To see this, consider the ideal of the closed subscheme defined by the homogeneous
ideal I spanned by (Y −W)(Y +W), (Y −W)(X− Z), (X− Z)(Y +W), and (X− Z)2. This
subscheme is the hyperplane section {X − Z = 0} together with an embedded point at
[0, 0, 1, 1]. The flat family over Spec(k[t]) defined by the homogeneous ideal (X − Z) ∩
(X, Y, Z− t) realizes I as the limit of the ideal of a union of a hyperplane and a point. The
homogeneous ideal (Y −W,X − Z) ∩ (Y + tW,X − t2Z) realizes it as the limit of a rank 1
reflexive sheaf O(D) satisfying the φ1(O(D)) = (−2,−2) and h(O(D)) = 2.

Observe that the ideal of the union of the hyperplane and the embedded point is not
reflexive (since the subscheme it defines is not Cohen–Macaulay). Thus this construction
shows that the locus of reflexive sheaves is not closed inM(X).

This example also shows that a connected component of M(X) can fail to be equidi-
mensional. Indeed, the irreducible component containing the reflexive sheaves satisfying
φ1(O(D)) = (−2,−2) and h(O(D)) = 2meets the component containing the ideal sheaves
of subschemes consisting of a hyperplane section and a disjoint point. The first compo-
nent has dimension two, while the dimension of the second component is bounded below
by 3+ 2 = 5.

Example 18. To illustrate what we have proven, consider the twisted cubic curve D on
X that is the image of P1

k → X under the morphism defined in projective coordinates by
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[S, T ] 7→ [T(T + S)2, T 2S, T 2(S + T), (T + S)2S]. This is one of the examples of a smooth
set-theoretic complete intersection contained in X that is given in [HP15, Example 7.12].
All such curves are given by the image Da,b,c of the morphism P1

k → P3
k defined by

[S, T ] 7→ [T(cT + bS)2, a2T 2S,−aT 2(cT + bS), (cT + bS)2S].

Here a, b, c ∈ k are nonzero scalars. All these curves are linearly equivalent toD. Indeed,
φ(Da,b,c) = (2, 1; [ pinch points]. A Riemann–Roch computations shows that the complete
linear system of effective almost Cartier divisors equivalent to D has dimension ≥ 2. We
conclude that the dimension is exactly 2, and the curves Da,b,c fill out a Zariski dense
subset.

There are also singular curves linearly equivalent to D. Let L1 equal the ruling that
passes through the pinch point [0, 1, 0, 0] and L2 the ruling passing through [0, 0, 0, 1]. Let
C1 denote the nonreduced curve defined by the projective ideal (W,Y)2 + (Y) and C2 the
curve defined by (W,Y)2 + (W). Then the curves L1 + C2, L2 + C1, and L1 + L2 + E are all
linearly equivalent to D.

The complete linear system associated to D is not a component of the Hilbert scheme
Hilb(X). Indeed, Proposition 16 states that O(D) lies on a 2-dimensional component of
M(X). Over a Zariski open neighborhood of O(D), the Abel map Hilb(X) → M(X) has
2-dimensional fibers, soD lies in a 4-dimensional component of Hilb(X). This component
can be described explicitly. For general scalars a, b, c, d ∈ k, the image of the morphism
P1
k → P3

k defined by

[S, T ] 7→ [−(bT 2 + cTS+ dS2)S, (T + aS)T 2,−T(bT 2 + cTS+ dS2), (T + aS)S2]

is a curve on X that lies in the same component of Hilb(X) as D. The subset of all such
curves is dense in the irreducible component containing D.

The singular locus. To complete our analysis of the reflexive sheaves in M(X), we need
to describe the irreducible components containing elements of GPic(X) − APic(X). If
O(D) ∈ GPic(X) − APic(X), then we will show that {O(D)} is the support of a nonre-
duced component of M(X). We prove this by first proving the analogous statement for
the Hilbert scheme and then completing the proof using the Abel map.

Recall that the singular locus Dsing ⊂ X defines an element O(Dsing) of GPic(X) −
APic(X), and every element of GPic(X) − APic(X) is of the form O(C + Dsing) for some
almost Cartier divisor C. We first study O(Dsing).

Lemma 19. The curveDsing is the support of a connected component of Hilb(X) that is isomorphic
to

Spec(k[a, b, c, d]/(a2, 2ab− c2, b2 − cd, d2)).

In particular, this component is nonreduced and supported at a point.

Proof. By local constancy of the degree and arithmetic genus, the subscheme of lines in
X is a union of connected components of Hilb(X) that contains Dsing. This subscheme is
naturally a closed subscheme of the Grassmannian Gr(1, 3) of lines in P3

k, and we prove
the lemma by explicitly computing equations for it.
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The equations

(7) W − aX− bZ = Y − CX−DZ = 0.

define a family of lines parameterized by Spec(k[a, b, c, d]) and hence a morphism

Spec(k[a, b, c, d])→ Gr(1, 3).

Furthermore, the origin 0 ∈ Spec(k[a, b, c, d]) corresponds to the line Dsing, so the fam-
ily of lines defines an open immersion Spec(k[a, b, c, d]) → Gr(3, 1) with image a Zariski
open neighborhood of Dsing in Gr(1, 3). We now compute the intersection of this neigh-
borhood with Hilb(X).

A family of parameterizations of the family of lines in (7) is given in projective coordi-
nates by [S, T ] 7→ [aS + bT, S, cS + dT, T ]. The intersection Spec(k[a, b, c, d]) ∩ Hilb(X) is
defined by the equations that are the coefficients of the equation obtained by substituting
the parameterization into the equation for X:

(aS+ bT)2S− (cS+ dT)2.

The lemma follows by expanding out this polynomial. �

Lemma 20. As L varies over the rulings of X, the curves Lp + Dsing form the closed points of a
connected component of the Hilbert scheme Hilb(X).

This component is covered by two Zariski open affine subscheme U1 and U2, each of which is
isomorphic to Spec(k[a, b, c, d, e, f, g, h]/I) for I the ideal generated by

d, e2, a2 + f, beg+ 2abe+ eg− b2, 2abf+ gf− ef2 − 2ac,(8)

eh+ 2abg+ g2 − efg− 2bc, 2abh+ gh− efh− c2.(9)

The isomorphism can be chosen so that U1 ∩U2 ⊂ Ui corresponds to the complement of the origin
in Spec(k[a, b, c, d, e, f, g, h]/I).

The origin in U1 corresponds to Lp1 +Dsing for p1 = [1, 0, 0, 0]; the origin in U2 corresponds to
Lp2 +Dsing for p2 = [0, 0, 1, 0]. (The rulings Lp1 and Lp2 are the ruling that pass through a pinch
point.)

Proof. The proof is similar to the proof of Lemma 19 except that the algebra computation
is more involved. The curve Lx + Dsing is a space curve of degree 2 and genus 0. The
equations

Y − aW − bX− cZ = 0,(10)

WX+ dW2 + eX2 + fWZ+ gXZ+ hZ2 = 0(11)

define a flat family of such curves and hence a morphism Spec(k[a, b, c, d, e, f, g, h]) →
Hilb(P3).

Observe that the morphism Spec(k[a, b, c, d, e, f, g, h]) → Hilb(P3) is injective on geo-
metric points. Indeed, every curve of degree 2 and genus 0 is a complete intersection
defined by a liner polynomial and a quadric polynomial. The linear polynomial is unique
up to scaling; the quadratic up to scaling and adding a multiple of the linear equation.
We conclude that Spec(k[a, b, c, d, e, f, g, h]) → Hilb(P3) is an open immersion. (Use
e.g. Zariski’s main theorem.)
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Now consider the intersection Spec(k[a, b, c, d, e, f, g, h]) ∩ Hilb(X). The plane (10) is
parameterized by

[S, T,U] 7→ [S, T, aS+ bT + cU,U].

The condition that a subscheme is contained in X is the condition that the following equa-
tion, involving two new variables i and j, has a solution:

S2T − (aS+ bT + cU)2 = (ST + dS2 + eT 2 + fSU+ gSU+ hU2)(S+ iT + jU).

The equations (8) are obtained from the by expression by expanding out, collecting coef-
ficients, and then eliminating the variables i, j.

The reduced subscheme of Spec(k[a, b, c, d, e, f, g, h]/I) is isomorphic to

Spec(k[a, b, c, d, e, f, g, h]/(b, c, d, e, f, g, a2 + f).

The closed point (b, c, d, e, f, g, a − α, f + α2) corresponds to the curve Lp +Dsing for p =
[1, 0, α, 0]. In particular, the Zariski open neighborhood

Spec(k[a, b, c, d, e, f, g, h]/(b, c, d, e, f, g, a2 + f) ⊂ Hilb(X)

contains all subschemes of the form Lp + Dsing except for the case p = [0, 0, 1, 0]. We
obtain a second neighborhood of this missing curve by swapping the roles of [1, 0, 0, 0]
and [0, 0, 1, 0]. �

Lemma 21. The sheaves O(Dsing) and O(Lx +Dsing) satisfy

hi(X,O(Dsing)) =

{
1 if i = 0;
0 otherwise

and

hi(X,O(Lx +Dsing)) =

{
2 if i = 0;
0 otherwise.

Proof. A local computation shows that Dsing ⊂ X is the curve defined by the conductor
ideal, so O(Dsing) = π∗OX̃. Since π is finite, Hi(X,O(Dsing)) = Hi(X̃,O), and the result
follows from [Har77, Lemma 2.4].

We now turn to the sheaf O(Lx + Dsing). Let L̃ ⊂ X̃ be the strict transform of a line
under the blow-down map X̃ → P2

k. The argument just given shows that O(Lx + Dsing)

and π∗O(L̃) are isomorphic away from Lx ∩ Dsing. We conclude from Hartog’s extension
principle that they are in fact isomorphic. We complete the proof as before. �

Corollary 22. If O(D) ∈ GPic(X) − APic(X), then {O(D)} is the support of a nonreduced
irreducible component.

Proof. WhenD = Dsing, Lemma 21 implies that the Abel map H(X)→M(X) is an isomor-
phism on a Zariski neighbood of O(Dsing), so the claim follows from Lemma 19.

A similar argument holds when D = Lx +Dsing: Lemma 21 implies that, over a Zariski
open neighborhood of O(Lx + Dsing), H(X) → M(X) is a P1

k-bundle, and we deduce the
claim by Lemma 20.

15



Every sheaf is either of the formO(Dsing)⊗L orO(Lx+Dsing)⊗L for some line bundle
since π∗(O(D)) ⊗ L = π∗(O(D) ⊗ π∗L). Since tensoring with a line bundle defines an
automorphismM(X)→M(X), the proof is complete. �

Behavior in families. Here we study howM(X) behaves when X is a fiber of a flat family
of varieties X → S. We focus on connecting the results of [Har97, BM03] to the geometry
ofM(X).

Quite generally, suppose we are given a morphism X → S with the property that the
fiber over a fixed closed point 0 ∈ S is X. If X → S is flat, locally projective, and finitely
presented with integral geometric fibers, then [AK80, (3.1) Theorem] states that there ex-
ists a morphism M(X/S) → S such that the geometric fiber over a point s ∈ S is the
moduli space M(Xs) of rank 1, torsion-free sheaves on the fiber Xs. We ask about the
flatness properties ofM(X/S)→ S.

The case studied in [BM03] is that case where (a) S is an irreducible k-smooth curve, (b)
0 ∈ S is a given closed point, and (c) X ⊂ P3

k ×k S is a family of cubic surfaces such that
the fiber over 0 ∈ S is X and every other fiber is smooth. (An example of such a family
is S = P1

k, 0 = the origin, and X the family defined by the bihomogeneous polynomial
T · (W2X− Y2Z) + S · f(W,X, Y, Z) for f a general cubic polynomial.)

Proposition 1.8 of [Har97] states that there exists a surjection of smooth curves S ′ → S
such that X contains effective generalized divisors E1, . . . , E6, G1, . . . , G6, and F1,2, . . . , F5,6
that restrict to the 27 lines on a smooth fiber of X → S. Set X ′ := X ×S S ′ equal to the
pullback. Then

APic(X ′/S ′) :=APic(X ′)/Pic(S ′)
=freely generated by O(H),O(E1), . . . , · · · O(E6);

RAPic(X ′/S ′) =freely generated by O(H),O(E1), . . . ,O(E5),
O(G6) = O(2H− E1 − E2 − E3 − E4 − E5).

Recall that RAPic(X ′/S ′) is defined to be the subgroup of rank 1 reflexive sheaves that
are invertible at the generic point of X.

Hartshorne shows that sending a rank 1 reflexive sheaf O(D) to the reflexive hull of
O(D)OX defines a map ρ0 : APic(X ′/S ′)→ GPic(X) that maps RAPic(X ′/S ′) into APic(X).
After possibly relabeling the lines, we have by [BM03, Proposition 3.10]

ρ0(O(E6)) =O(Dsing),

ρ0(O(Fi,j)) =O(Dsing) for j 6= 6,
ρ0(O(G6)) =O(E),
ρ0(O(Ei)) =O(Li) for some ruling Li,
ρ0(O(Fi,6)) =O(Mi) forMi the ruling conjugate to Li.

TO BE ADDED AFTER THE ARTICLE HAS BEEN REFEREED.
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